Estimated at $20.2 billion in 2023, the global cell analysis market is anticipated to climb to $33.9 billion by 2028, growing at a CAGR of 10.9%. Key drivers include a preference for cell-based assays and significant funding for related research. The latest study covers industry trends, pricing, patent analysis, and key stakeholder insights, emphasizing how modern cell-based assays improve efficiency in drug discovery by surpassing the limitations of traditional animal testing.
Cell Analysis Market Dynamics
DRIVER: Growing number of drug discovery activities
Adoption of cell-based screening assays has increased in he drug discovery activities to understand associated complexities. Additionally, advances in cell biology, bioinformatics, molecular biology, genomics, and proteomics have generated large volumes of data, owing to which the use of cell-based assays in the drug development process has gained importance. Similarly, the Human Genome Project has generated a number of targets on which drug screening experiments can be carried out. This rapid expansion in drug targets and drug leads in recent years has accelerated the development of cell-based assays for primary and secondary screening in drug discovery.
RESTRAINT: High cost of instruments and restrictions on reagent use
The introduction of high-throughput screening (HTS) and high-content screening (HCS) technologies in cell analysis has increased their reliability. However, these technologies have also resulted in a significant increase in the cost of instruments. Moreover, the time and cost involved in each HTS process are directly proportional to the target molecule’s complexity; consequently, the higher the complexity, the greater the cost. In biopharmaceutical companies, the overall cost of production of biopharmaceuticals has increased considerably due to the use of these expensive systems.
OPPORTUNITY: Application of novel cell-based assays in cancer research
In the last few decades, the incidence and prevalence of cancer have increased significantly across the globe, and this trend is expected to continue in the coming years. In an effort to reduce cancer incidence and mortality, the demand for novel approaches that offer effective cancer diagnosis and treatment has increased in recent years. In this regard, some recent studies have been published that highlight the importance of cell-based assays in cancer research.
The software segment of the cell analysis industry is expected to grow at the highest rate during the forecast period
Based on product & service, the global cell analysis market is segmented into reagents & consumables, instruments, accessories, software, and services. The reagents & consumables segment accounted for the largest share of the market in 2022. Prominent companies are providing flow cytometry reagents as directly conjugated products. Companies are introducing high-quality reagents with an enhanced geographic reach contributing to the largest share of the reagents & consumables market. Innovative offerings addressing complex datasets with multiple analytical modalities for effective interpretation is the key contributing factor to the segment’s fastest growth.
Cell Analysis Market Dynamics
DRIVER: Growing number of drug discovery activities
Adoption of cell-based screening assays has increased in he drug discovery activities to understand associated complexities. Additionally, advances in cell biology, bioinformatics, molecular biology, genomics, and proteomics have generated large volumes of data, owing to which the use of cell-based assays in the drug development process has gained importance. Similarly, the Human Genome Project has generated a number of targets on which drug screening experiments can be carried out. This rapid expansion in drug targets and drug leads in recent years has accelerated the development of cell-based assays for primary and secondary screening in drug discovery.
RESTRAINT: High cost of instruments and restrictions on reagent use
The introduction of high-throughput screening (HTS) and high-content screening (HCS) technologies in cell analysis has increased their reliability. However, these technologies have also resulted in a significant increase in the cost of instruments. Moreover, the time and cost involved in each HTS process are directly proportional to the target molecule’s complexity; consequently, the higher the complexity, the greater the cost. In biopharmaceutical companies, the overall cost of production of biopharmaceuticals has increased considerably due to the use of these expensive systems.
OPPORTUNITY: Application of novel cell-based assays in cancer research
In the last few decades, the incidence and prevalence of cancer have increased significantly across the globe, and this trend is expected to continue in the coming years. In an effort to reduce cancer incidence and mortality, the demand for novel approaches that offer effective cancer diagnosis and treatment has increased in recent years. In this regard, some recent studies have been published that highlight the importance of cell-based assays in cancer research.
Prominent Players:
Danaher (US), Thermo Fisher Scientific (US), Becton, Dickinson and Company (US), General Electric (US), Merck KGaA (US), Agilent Technologies (US), Olympus Corporation (Japan), Miltenyi Biotec (US), Bio-Rad Laboratories (US), BioStatus Limited (UK), Fluidigm Corporation (US), NanoCellect Biomedical (US), Cell Biolabs (US), Creative Bioarray (US), Meiji Techno (US), Promega Corporation (US), PerkinElmer (US), Tecan Trading AG (Switzerland), CELLINK (US), QIAGEN (Germany), Corning Incorporated (US), 10x Genomics (US), and Illumina (US).
Recent Developments of Cell Analysis Industry
· In 2023, Becton, Dickinson and Company (US) launched a Spectral Cell Sorter that is coupled with high-speed cell imaging. this product combines real-time imaging technology with spectral flow cytometry.
· In 2020, Miltenyi Biotec (Germany) launched MACS GMP Tyto Cartridge, a GMP-compliant cell sorter..
· In 2020, Bio-Rad Laboratories, Inc. (US) acquired Celsee, Inc., a provider of instruments and consumables for the isolation, detection, and analysis of single cells. This acquisition expanded the company’s product offerings in the flow cytometry market.
Content Source:
Comments